HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  a17i Unicode version

Theorem a17i 96
Description: Inference form of ax-17 95.
Hypotheses
Ref Expression
ax-17.1 |- A:be
ax-17.2 |- B:al
a17i.3 |- R:*
Assertion
Ref Expression
a17i |- R |= [(\x:al AB) = A]
Distinct variable group:   x,A

Proof of Theorem a17i
StepHypRef Expression
1 a17i.3 . 2 |- R:*
2 ax-17.1 . . 3 |- A:be
3 ax-17.2 . . 3 |- B:al
42, 3ax-17 95 . 2 |- T. |= [(\x:al AB) = A]
51, 4a1i 28 1 |- R |= [(\x:al AB) = A]
Colors of variables: type var term
Syntax hints:  *hb 3  kc 5  \kl 6   = ke 7  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem is referenced by:  hbth  99  clf  105  hbct  145  axun  209
This theorem was proved from axioms:  ax-syl 15  ax-trud 26  ax-17 95
  Copyright terms: Public domain W3C validator