HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  df-al Structured version   Unicode version

Definition df-al 116
Description: Define the for all operator.
Assertion
Ref Expression
df-al |- T. |= [A. = \p:(al -> *) [p:(al -> *) = \x:al T.]]
Distinct variable group:   x,p

Detailed syntax breakdown of Definition df-al
StepHypRef Expression
1 kt 8 . 2 term T.
2 tal 112 . . 3 term A.
3 hal . . . . 5 type al
4 hb 3 . . . . 5 type *
53, 4ht 2 . . . 4 type (al -> *)
6 vp . . . 4 var p
75, 6tv 1 . . . . 5 term p:(al -> *)
8 vx . . . . . 6 var x
93, 8, 1kl 6 . . . . 5 term \x:al T.
10 ke 7 . . . . 5 term =
117, 9, 10kbr 9 . . . 4 term [p:(al -> *) = \x:al T.]
125, 6, 11kl 6 . . 3 term \p:(al -> *) [p:(al -> *) = \x:al T.]
132, 12, 10kbr 9 . 2 term [A. = \p:(al -> *) [p:(al -> *) = \x:al T.]]
141, 13wffMMJ2 11 1 wff T. |= [A. = \p:(al -> *) [p:(al -> *) = \x:al T.]]
Colors of variables: type var term
This definition is referenced by:  wal  124  alval  132
  Copyright terms: Public domain W3C validator