HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  oveq2 Unicode version

Theorem oveq2 91
Description: Equality theorem for binary operation.
Hypotheses
Ref Expression
oveq.1 |- F:(al -> (be -> ga))
oveq.2 |- A:al
oveq.3 |- B:be
oveq2.4 |- R |= [B = T]
Assertion
Ref Expression
oveq2 |- R |= [[AFB] = [AFT]]

Proof of Theorem oveq2
StepHypRef Expression
1 oveq.1 . 2 |- F:(al -> (be -> ga))
2 oveq.2 . 2 |- A:al
3 oveq.3 . 2 |- B:be
4 oveq2.4 . . . 4 |- R |= [B = T]
54ax-cb1 29 . . 3 |- R:*
65, 2eqid 73 . 2 |- R |= [A = A]
71, 2, 3, 6, 4oveq12 90 1 |- R |= [[AFB] = [AFT]]
Colors of variables: type var term
Syntax hints:   -> ht 2   = ke 7  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem is referenced by:  imval  136  orval  137  anval  138  ecase  153  exlimdv2  156  exlimd  171  axpow  208  axun  209
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-refl 39  ax-eqmp 42  ax-ceq 46
This theorem depends on definitions:  df-ov 65
  Copyright terms: Public domain W3C validator