![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elon | Unicode version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4148 |
. 2
![]() ![]() ![]() | |
2 | 0ex 3907 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | elon 4131 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 144 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-nul 3906 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-dif 2976 df-in 2980 df-ss 2987 df-nul 3253 df-pw 3386 df-uni 3604 df-tr 3878 df-iord 4123 df-on 4125 |
This theorem is referenced by: inton 4150 onn0 4157 onm 4158 limon 4259 ordtriexmid 4267 ordtri2orexmid 4268 onsucsssucexmid 4272 onsucelsucexmid 4275 ordsoexmid 4307 ordpwsucexmid 4315 ordtri2or2exmid 4316 tfr0dm 5965 1on 6066 ordgt0ge1 6076 omv 6093 oa0 6095 om0 6096 oei0 6097 omcl 6099 omv2 6103 oaword1 6108 nna0r 6115 nnm0r 6116 card0 6506 |
Copyright terms: Public domain | W3C validator |