![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0lt1 | Unicode version |
Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
0lt1 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0lt1 7144 |
. 2
![]() ![]() ![]() ![]() | |
2 | 0re 7181 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1re 7180 |
. . 3
![]() ![]() ![]() ![]() | |
4 | ltxrlt 7245 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | mp2an 417 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | mpbir 144 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1re 7132 ax-addrcl 7135 ax-0lt1 7144 ax-rnegex 7147 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-xp 4377 df-pnf 7217 df-mnf 7218 df-ltxr 7220 |
This theorem is referenced by: ine0 7565 0le1 7652 inelr 7751 1ap0 7757 eqneg 7887 ltp1 7989 ltm1 7991 recgt0 7995 mulgt1 8008 reclt1 8041 recgt1 8042 recgt1i 8043 recp1lt1 8044 recreclt 8045 nnge1 8129 nngt0 8131 0nnn 8133 nnrecgt0 8143 0ne1 8173 2pos 8197 3pos 8200 4pos 8203 5pos 8206 6pos 8207 7pos 8208 8pos 8209 9pos 8210 neg1lt0 8214 halflt1 8315 nn0p1gt0 8384 elnnnn0c 8400 elnnz1 8455 recnz 8521 1rp 8819 divlt1lt 8882 divle1le 8883 ledivge1le 8884 nnledivrp 8918 fz10 9141 fzpreddisj 9164 elfz1b 9183 modqfrac 9419 expgt1 9611 ltexp2a 9625 leexp2a 9626 expnbnd 9693 expnlbnd 9694 expnlbnd2 9695 expcanlem 9740 expcan 9741 bcn1 9782 resqrexlem1arp 10029 mulcn2 10289 nnoddm1d2 10454 dvdsnprmd 10651 |
Copyright terms: Public domain | W3C validator |