![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0re | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
0re |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7180 |
. 2
![]() ![]() ![]() ![]() | |
2 | ax-rnegex 7147 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | readdcl 7161 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 3 | mpan 415 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | eleq1 2142 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | syl5ibcom 153 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | rexlimiv 2472 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 7 | mp2b 8 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-1re 7132 ax-addrcl 7135 ax-rnegex 7147 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-cleq 2075 df-clel 2078 df-ral 2354 df-rex 2355 |
This theorem is referenced by: 0red 7182 0xr 7227 axmulgt0 7251 gtso 7257 0lt1 7303 ine0 7565 ltaddneg 7595 addgt0 7619 addgegt0 7620 addgtge0 7621 addge0 7622 ltaddpos 7623 ltneg 7633 leneg 7636 lt0neg1 7639 lt0neg2 7640 le0neg1 7641 le0neg2 7642 addge01 7643 suble0 7647 0le1 7652 gt0ne0i 7654 gt0ne0d 7680 lt0ne0d 7681 recexre 7745 recexgt0 7747 inelr 7751 rimul 7752 1ap0 7757 reapmul1 7762 apsqgt0 7768 msqge0 7783 mulge0 7786 recexaplem2 7809 recexap 7810 rerecclap 7885 ltm1 7991 recgt0 7995 ltmul12a 8005 lemul12a 8007 mulgt1 8008 gt0div 8015 ge0div 8016 recgt1i 8043 recreclt 8045 crap0 8102 nnge1 8129 nngt0 8131 nnrecgt0 8143 0ne1 8173 0le0 8195 neg1lt0 8214 halfge0 8314 iap0 8321 nn0ssre 8359 nn0ge0 8380 nn0nlt0 8381 nn0le0eq0 8383 0mnnnnn0 8387 elnnnn0b 8399 elnnnn0c 8400 elnnz 8442 0z 8443 elnnz1 8455 nn0lt10b 8509 recnz 8521 gtndiv 8523 fnn0ind 8544 rpge0 8827 rpnegap 8847 0nrp 8848 0ltpnf 8933 mnflt0 8935 xneg0 8974 elrege0 9075 0e0icopnf 9078 0elunit 9084 1elunit 9085 divelunit 9100 lincmb01cmp 9101 iccf1o 9102 unitssre 9103 modqelico 9416 modqmuladdim 9449 addmodid 9454 expubnd 9630 le2sq2 9648 bernneq2 9691 expnbnd 9693 expnlbnd 9694 faclbnd 9765 faclbnd3 9767 faclbnd6 9768 bcval4 9776 bcpasc 9790 reim0 9886 re0 9920 im0 9921 rei 9924 imi 9925 cj0 9926 caucvgre 10005 rennim 10026 sqrt0rlem 10027 sqrt0 10028 resqrexlemdecn 10036 resqrexlemnm 10042 resqrexlemgt0 10044 sqrt00 10064 sqrt9 10072 sqrt2gt1lt2 10073 leabs 10098 ltabs 10111 sqrtpclii 10154 max0addsup 10243 fimaxre2 10247 climge0 10301 iserige0 10319 flodddiv4 10478 gcdn0gt0 10513 nn0seqcvgd 10567 algcvgblem 10575 ialgcvga 10577 ex-gcd 10719 |
Copyright terms: Public domain | W3C validator |