![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0z | Unicode version |
Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
0z |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7233 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqid 2083 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | 3mix1i 1111 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | elz 8486 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 3, 4 | mpbir2an 884 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-1re 7184 ax-addrcl 7187 ax-rnegex 7199 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-un 2986 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-iota 4917 df-fv 4960 df-ov 5566 df-neg 7401 df-z 8485 |
This theorem is referenced by: 0zd 8496 nn0ssz 8502 znegcl 8515 zgt0ge1 8542 nn0n0n1ge2b 8560 nn0lt10b 8561 nnm1ge0 8566 gtndiv 8575 msqznn 8580 zeo 8585 nn0ind 8594 fnn0ind 8596 nn0uz 8786 1eluzge0 8795 eqreznegel 8832 qreccl 8860 qdivcl 8861 irrmul 8865 fz10 9193 fz01en 9200 fzpreddisj 9216 fzshftral 9253 fznn0 9258 fz0tp 9264 elfz0ubfz0 9265 1fv 9278 lbfzo0 9319 elfzonlteqm1 9348 fzo01 9354 fzo0to2pr 9356 fzo0to3tp 9357 flqge0nn0 9427 divfl0 9430 btwnzge0 9434 modqmulnn 9476 zmodfz 9480 modqid 9483 zmodid2 9486 q0mod 9489 modqmuladdnn0 9502 frecfzennn 9560 expival 9627 qexpclz 9646 facdiv 9814 bcval 9825 bcnn 9833 bcm1k 9836 ibcval5 9839 bcpasc 9842 4bc2eq6 9850 hashinfom 9854 rexfiuz 10076 qabsor 10162 nn0abscl 10172 nnabscl 10187 climz 10332 climaddc1 10368 climmulc2 10370 climsubc1 10371 climsubc2 10372 climlec2 10380 dvdsval2 10406 dvdsdc 10411 moddvds 10412 dvds0 10418 0dvds 10423 zdvdsdc 10424 dvdscmulr 10432 dvdsmulcr 10433 dvdslelemd 10451 dvdsabseq 10455 divconjdvds 10457 alzdvds 10462 fzo0dvdseq 10465 odd2np1lem 10479 gcdmndc 10547 gcdsupex 10556 gcdsupcl 10557 gcd0val 10559 gcddvds 10562 gcd0id 10577 gcdid0 10578 gcdid 10584 bezoutlema 10595 bezoutlemb 10596 bezoutlembi 10601 dfgcd3 10606 dfgcd2 10610 gcdmultiplez 10617 dvdssq 10627 algcvgblem 10638 lcmmndc 10651 lcm0val 10654 dvdslcm 10658 lcmeq0 10660 lcmgcd 10667 lcmdvds 10668 lcmid 10669 3lcm2e6woprm 10675 6lcm4e12 10676 cncongr2 10693 sqrt2irrap 10765 dfphi2 10803 phiprmpw 10805 crth 10807 phimullem 10808 hashgcdeq 10811 |
Copyright terms: Public domain | W3C validator |