Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21h Unicode version

Theorem 19.21h 1465
 Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as " is not free in ." New proofs should use 19.21 1491 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
19.21h.1
Assertion
Ref Expression
19.21h

Proof of Theorem 19.21h
StepHypRef Expression
1 19.21h.1 . . 3
2 alim 1362 . . 3
31, 2syl5 32 . 2
4 hba1 1449 . . . 4
51, 4hbim 1453 . . 3
6 ax-4 1416 . . . 4
76imim2i 12 . . 3
85, 7alrimih 1374 . 2
93, 8impbii 121 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 102  wal 1257 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-4 1416  ax-ial 1443  ax-i5r 1444 This theorem depends on definitions:  df-bi 114 This theorem is referenced by:  hbim1  1478  nf3  1575  19.21v  1769
 Copyright terms: Public domain W3C validator