ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21ht Unicode version

Theorem 19.21ht 1489
Description: Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) (New usage is discouraged.)
Assertion
Ref Expression
19.21ht  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x (
ph  ->  ps )  <->  ( ph  ->  A. x ps )
) )

Proof of Theorem 19.21ht
StepHypRef Expression
1 alim 1362 . . . . 5  |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
21imim2d 52 . . . 4  |-  ( A. x ( ph  ->  ps )  ->  ( ( ph  ->  A. x ph )  ->  ( ph  ->  A. x ps ) ) )
32com12 30 . . 3  |-  ( (
ph  ->  A. x ph )  ->  ( A. x (
ph  ->  ps )  -> 
( ph  ->  A. x ps ) ) )
43sps 1446 . 2  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x (
ph  ->  ps )  -> 
( ph  ->  A. x ps ) ) )
5 hba1 1449 . . . 4  |-  ( A. x ( ph  ->  A. x ph )  ->  A. x A. x (
ph  ->  A. x ph )
)
6 ax-4 1416 . . . 4  |-  ( A. x ( ph  ->  A. x ph )  -> 
( ph  ->  A. x ph ) )
7 hba1 1449 . . . . 5  |-  ( A. x ps  ->  A. x A. x ps )
87a1i 9 . . . 4  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x ps 
->  A. x A. x ps ) )
95, 6, 8hbimd 1481 . . 3  |-  ( A. x ( ph  ->  A. x ph )  -> 
( ( ph  ->  A. x ps )  ->  A. x ( ph  ->  A. x ps ) ) )
10 ax-4 1416 . . . . 5  |-  ( A. x ps  ->  ps )
1110imim2i 12 . . . 4  |-  ( (
ph  ->  A. x ps )  ->  ( ph  ->  ps ) )
1211alimi 1360 . . 3  |-  ( A. x ( ph  ->  A. x ps )  ->  A. x ( ph  ->  ps ) )
139, 12syl6 33 . 2  |-  ( A. x ( ph  ->  A. x ph )  -> 
( ( ph  ->  A. x ps )  ->  A. x ( ph  ->  ps ) ) )
144, 13impbid 124 1  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x (
ph  ->  ps )  <->  ( ph  ->  A. x ps )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102   A.wal 1257
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-4 1416  ax-ial 1443  ax-i5r 1444
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  19.21t  1490  sbal2  1914
  Copyright terms: Public domain W3C validator