ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23t Unicode version

Theorem 19.23t 1608
Description: Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Assertion
Ref Expression
19.23t  |-  ( F/ x ps  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )

Proof of Theorem 19.23t
StepHypRef Expression
1 exim 1531 . . 3  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x ps ) )
2 19.9t 1574 . . . 4  |-  ( F/ x ps  ->  ( E. x ps  <->  ps )
)
32biimpd 142 . . 3  |-  ( F/ x ps  ->  ( E. x ps  ->  ps ) )
41, 3syl9r 72 . 2  |-  ( F/ x ps  ->  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  ps )
) )
5 nfr 1452 . . . 4  |-  ( F/ x ps  ->  ( ps  ->  A. x ps )
)
65imim2d 53 . . 3  |-  ( F/ x ps  ->  (
( E. x ph  ->  ps )  ->  ( E. x ph  ->  A. x ps ) ) )
7 19.38 1607 . . 3  |-  ( ( E. x ph  ->  A. x ps )  ->  A. x ( ph  ->  ps ) )
86, 7syl6 33 . 2  |-  ( F/ x ps  ->  (
( E. x ph  ->  ps )  ->  A. x
( ph  ->  ps )
) )
94, 8impbid 127 1  |-  ( F/ x ps  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1283   F/wnf 1390   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-nf 1391
This theorem is referenced by:  19.23  1609  r19.23t  2468  ceqsalt  2626  vtoclgft  2650  sbciegft  2845
  Copyright terms: Public domain W3C validator