ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.29x Unicode version

Theorem 19.29x 1555
Description: Variation of Theorem 19.29 of [Margaris] p. 90 with mixed quantification. (Contributed by NM, 11-Feb-2005.)
Assertion
Ref Expression
19.29x  |-  ( ( E. x A. y ph  /\  A. x E. y ps )  ->  E. x E. y ( ph  /\  ps ) )

Proof of Theorem 19.29x
StepHypRef Expression
1 19.29r 1553 . 2  |-  ( ( E. x A. y ph  /\  A. x E. y ps )  ->  E. x
( A. y ph  /\ 
E. y ps )
)
2 19.29 1552 . . 3  |-  ( ( A. y ph  /\  E. y ps )  ->  E. y ( ph  /\  ps ) )
32eximi 1532 . 2  |-  ( E. x ( A. y ph  /\  E. y ps )  ->  E. x E. y ( ph  /\  ps ) )
41, 3syl 14 1  |-  ( ( E. x A. y ph  /\  A. x E. y ps )  ->  E. x E. y ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1283   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-ial 1468
This theorem depends on definitions:  df-bi 115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator