ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.3 Unicode version

Theorem 19.3 1462
Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.3.1  |-  F/ x ph
Assertion
Ref Expression
19.3  |-  ( A. x ph  <->  ph )

Proof of Theorem 19.3
StepHypRef Expression
1 sp 1417 . 2  |-  ( A. x ph  ->  ph )
2 19.3.1 . . 3  |-  F/ x ph
32nfri 1428 . 2  |-  ( ph  ->  A. x ph )
41, 3impbii 121 1  |-  ( A. x ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 102   A.wal 1257   F/wnf 1365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-4 1416
This theorem depends on definitions:  df-bi 114  df-nf 1366
This theorem is referenced by:  19.16  1463  19.17  1464  19.27  1469  19.28  1471  19.37-1  1580  rexxfrd  4223
  Copyright terms: Public domain W3C validator