ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.38 Unicode version

Theorem 19.38 1607
Description: Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.38  |-  ( ( E. x ph  ->  A. x ps )  ->  A. x ( ph  ->  ps ) )

Proof of Theorem 19.38
StepHypRef Expression
1 hbe1 1425 . . 3  |-  ( E. x ph  ->  A. x E. x ph )
2 hba1 1474 . . 3  |-  ( A. x ps  ->  A. x A. x ps )
31, 2hbim 1478 . 2  |-  ( ( E. x ph  ->  A. x ps )  ->  A. x ( E. x ph  ->  A. x ps )
)
4 19.8a 1523 . . 3  |-  ( ph  ->  E. x ph )
5 ax-4 1441 . . 3  |-  ( A. x ps  ->  ps )
64, 5imim12i 58 . 2  |-  ( ( E. x ph  ->  A. x ps )  -> 
( ph  ->  ps )
)
73, 6alrimih 1399 1  |-  ( ( E. x ph  ->  A. x ps )  ->  A. x ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1283   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  19.23t  1608  sbi2v  1815  mo3h  1996  rgenm  3360  ralm  3362
  Copyright terms: Public domain W3C validator