ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40 Unicode version

Theorem 19.40 1563
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.40  |-  ( E. x ( ph  /\  ps )  ->  ( E. x ph  /\  E. x ps ) )

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1549 . 2  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )
2 simpr 108 . . 3  |-  ( (
ph  /\  ps )  ->  ps )
32eximi 1532 . 2  |-  ( E. x ( ph  /\  ps )  ->  E. x ps )
41, 3jca 300 1  |-  ( E. x ( ph  /\  ps )  ->  ( E. x ph  /\  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-ial 1468
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  19.40-2  1564  19.41h  1616  19.41  1617  exdistrfor  1723  uniin  3641  copsexg  4027  dmin  4591  imadif  5030  imainlem  5031
  Copyright terms: Public domain W3C validator