ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.41vvv Unicode version

Theorem 19.41vvv 1826
Description: Theorem 19.41 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 30-Apr-1995.)
Assertion
Ref Expression
19.41vvv  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  ( E. x E. y E. z ph  /\ 
ps ) )
Distinct variable groups:    ps, x    ps, y    ps, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem 19.41vvv
StepHypRef Expression
1 19.41vv 1825 . . 3  |-  ( E. y E. z (
ph  /\  ps )  <->  ( E. y E. z ph  /\  ps ) )
21exbii 1537 . 2  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  E. x ( E. y E. z ph  /\ 
ps ) )
3 19.41v 1824 . 2  |-  ( E. x ( E. y E. z ph  /\  ps ) 
<->  ( E. x E. y E. z ph  /\  ps ) )
42, 3bitri 182 1  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  ( E. x E. y E. z ph  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-17 1460  ax-ial 1468
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  19.41vvvv  1827  eloprabga  5616  dftpos3  5905
  Copyright terms: Public domain W3C validator