ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idprl Unicode version

Theorem 1idprl 7391
Description: Lemma for 1idpr 7393. (Contributed by Jim Kingdon, 13-Dec-2019.)
Assertion
Ref Expression
1idprl  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  1P ) )  =  ( 1st `  A ) )

Proof of Theorem 1idprl
Dummy variables  x  y  z  w  v  u  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3112 . . . . . 6  |-  ( 1st `  1P )  C_  ( 1st `  1P )
2 rexss 3159 . . . . . 6  |-  ( ( 1st `  1P ) 
C_  ( 1st `  1P )  ->  ( E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g )  <->  E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) ) )
31, 2ax-mp 5 . . . . 5  |-  ( E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
)  <->  E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) )
4 r19.42v 2586 . . . . . 6  |-  ( E. g  e.  ( 1st `  1P ) ( x 
<Q  f  /\  x  =  ( f  .Q  g ) )  <->  ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) )
5 1pr 7355 . . . . . . . . . . 11  |-  1P  e.  P.
6 prop 7276 . . . . . . . . . . . 12  |-  ( 1P  e.  P.  ->  <. ( 1st `  1P ) ,  ( 2nd `  1P ) >.  e.  P. )
7 elprnql 7282 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  1P ) ,  ( 2nd `  1P ) >.  e.  P.  /\  g  e.  ( 1st `  1P ) )  -> 
g  e.  Q. )
86, 7sylan 281 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  g  e.  ( 1st `  1P ) )  -> 
g  e.  Q. )
95, 8mpan 420 . . . . . . . . . 10  |-  ( g  e.  ( 1st `  1P )  ->  g  e.  Q. )
10 prop 7276 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
11 elprnql 7282 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
1210, 11sylan 281 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
13 breq1 3927 . . . . . . . . . . . . 13  |-  ( x  =  ( f  .Q  g )  ->  (
x  <Q  f  <->  ( f  .Q  g )  <Q  f
) )
14133ad2ant3 1004 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  ( f  .Q  g ) 
<Q  f ) )
15 1prl 7356 . . . . . . . . . . . . . . 15  |-  ( 1st `  1P )  =  {
g  |  g  <Q  1Q }
1615abeq2i 2248 . . . . . . . . . . . . . 14  |-  ( g  e.  ( 1st `  1P ) 
<->  g  <Q  1Q )
17 1nq 7167 . . . . . . . . . . . . . . . . 17  |-  1Q  e.  Q.
18 ltmnqg 7202 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  Q.  /\  1Q  e.  Q.  /\  f  e.  Q. )  ->  (
g  <Q  1Q  <->  ( f  .Q  g )  <Q  (
f  .Q  1Q ) ) )
1917, 18mp3an2 1303 . . . . . . . . . . . . . . . 16  |-  ( ( g  e.  Q.  /\  f  e.  Q. )  ->  ( g  <Q  1Q  <->  ( f  .Q  g )  <Q  (
f  .Q  1Q ) ) )
2019ancoms 266 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( g  <Q  1Q  <->  ( f  .Q  g )  <Q  (
f  .Q  1Q ) ) )
21 mulidnq 7190 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  Q.  ->  (
f  .Q  1Q )  =  f )
2221breq2d 3936 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  (
( f  .Q  g
)  <Q  ( f  .Q  1Q )  <->  ( f  .Q  g )  <Q  f
) )
2322adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( ( f  .Q  g )  <Q  (
f  .Q  1Q )  <-> 
( f  .Q  g
)  <Q  f ) )
2420, 23bitrd 187 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( g  <Q  1Q  <->  ( f  .Q  g )  <Q  f
) )
2516, 24syl5rbb 192 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( ( f  .Q  g )  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
26253adant3 1001 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( ( f  .Q  g )  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
2714, 26bitrd 187 . . . . . . . . . . 11  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
2812, 27syl3an1 1249 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
299, 28syl3an2 1250 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
30293expia 1183 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  ( 1st `  1P ) )  -> 
( x  =  ( f  .Q  g )  ->  ( x  <Q  f  <-> 
g  e.  ( 1st `  1P ) ) ) )
3130pm5.32rd 446 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  ( 1st `  1P ) )  -> 
( ( x  <Q  f  /\  x  =  ( f  .Q  g ) )  <->  ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) ) )
3231rexbidva 2432 . . . . . 6  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( E. g  e.  ( 1st `  1P ) ( x  <Q  f  /\  x  =  ( f  .Q  g ) )  <->  E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) ) )
334, 32syl5rbbr 194 . . . . 5  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) )  <->  ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
343, 33syl5bb 191 . . . 4  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g )  <-> 
( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g ) ) ) )
3534rexbidva 2432 . . 3  |-  ( A  e.  P.  ->  ( E. f  e.  ( 1st `  A ) E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
)  <->  E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g ) ) ) )
36 df-imp 7270 . . . . 5  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  <. { w  e.  Q.  |  E. u  e.  Q.  E. v  e.  Q.  (
u  e.  ( 1st `  y )  /\  v  e.  ( 1st `  z
)  /\  w  =  ( u  .Q  v
) ) } ,  { w  e.  Q.  |  E. u  e.  Q.  E. v  e.  Q.  (
u  e.  ( 2nd `  y )  /\  v  e.  ( 2nd `  z
)  /\  w  =  ( u  .Q  v
) ) } >. )
37 mulclnq 7177 . . . . 5  |-  ( ( u  e.  Q.  /\  v  e.  Q. )  ->  ( u  .Q  v
)  e.  Q. )
3836, 37genpelvl 7313 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( x  e.  ( 1st `  ( A  .P.  1P ) )  <->  E. f  e.  ( 1st `  A ) E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
) ) )
395, 38mpan2 421 . . 3  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  ( A  .P.  1P ) )  <->  E. f  e.  ( 1st `  A
) E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) )
40 prnmaxl 7289 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. f  e.  ( 1st `  A ) x 
<Q  f )
4110, 40sylan 281 . . . . . 6  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. f  e.  ( 1st `  A ) x 
<Q  f )
42 ltrelnq 7166 . . . . . . . . . . . . 13  |-  <Q  C_  ( Q.  X.  Q. )
4342brel 4586 . . . . . . . . . . . 12  |-  ( x 
<Q  f  ->  ( x  e.  Q.  /\  f  e.  Q. ) )
44 ltmnqg 7202 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
4544adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
46 simpl 108 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  x  e.  Q. )
47 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  f  e.  Q. )
48 recclnq 7193 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  ( *Q `  f )  e. 
Q. )
4948adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( *Q `  f
)  e.  Q. )
50 mulcomnqg 7184 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
5150adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
5245, 46, 47, 49, 51caovord2d 5933 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  <->  ( x  .Q  ( *Q
`  f ) ) 
<Q  ( f  .Q  ( *Q `  f ) ) ) )
53 recidnq 7194 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  (
f  .Q  ( *Q
`  f ) )  =  1Q )
5453breq2d 3936 . . . . . . . . . . . . . . 15  |-  ( f  e.  Q.  ->  (
( x  .Q  ( *Q `  f ) ) 
<Q  ( f  .Q  ( *Q `  f ) )  <-> 
( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
5554adantl 275 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( ( x  .Q  ( *Q `  f ) )  <Q  ( f  .Q  ( *Q `  f
) )  <->  ( x  .Q  ( *Q `  f
) )  <Q  1Q ) )
5652, 55bitrd 187 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  <->  ( x  .Q  ( *Q
`  f ) ) 
<Q  1Q ) )
5756biimpd 143 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  ->  ( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
5843, 57mpcom 36 . . . . . . . . . . 11  |-  ( x 
<Q  f  ->  ( x  .Q  ( *Q `  f ) )  <Q  1Q )
59 mulclnq 7177 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  ( *Q `  f )  e.  Q. )  -> 
( x  .Q  ( *Q `  f ) )  e.  Q. )
6048, 59sylan2 284 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  ( *Q `  f ) )  e.  Q. )
6143, 60syl 14 . . . . . . . . . . . 12  |-  ( x 
<Q  f  ->  ( x  .Q  ( *Q `  f ) )  e. 
Q. )
62 breq1 3927 . . . . . . . . . . . . 13  |-  ( g  =  ( x  .Q  ( *Q `  f ) )  ->  ( g  <Q  1Q  <->  ( x  .Q  ( *Q `  f ) )  <Q  1Q )
)
6362, 15elab2g 2826 . . . . . . . . . . . 12  |-  ( ( x  .Q  ( *Q
`  f ) )  e.  Q.  ->  (
( x  .Q  ( *Q `  f ) )  e.  ( 1st `  1P ) 
<->  ( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
6461, 63syl 14 . . . . . . . . . . 11  |-  ( x 
<Q  f  ->  ( ( x  .Q  ( *Q
`  f ) )  e.  ( 1st `  1P ) 
<->  ( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
6558, 64mpbird 166 . . . . . . . . . 10  |-  ( x 
<Q  f  ->  ( x  .Q  ( *Q `  f ) )  e.  ( 1st `  1P ) )
66 mulassnqg 7185 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
( y  .Q  z
)  .Q  w )  =  ( y  .Q  ( z  .Q  w
) ) )
6766adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( (
y  .Q  z )  .Q  w )  =  ( y  .Q  (
z  .Q  w ) ) )
6847, 46, 49, 51, 67caov12d 5945 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) )  =  ( x  .Q  ( f  .Q  ( *Q `  f
) ) ) )
6953oveq2d 5783 . . . . . . . . . . . . 13  |-  ( f  e.  Q.  ->  (
x  .Q  ( f  .Q  ( *Q `  f ) ) )  =  ( x  .Q  1Q ) )
7069adantl 275 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  (
f  .Q  ( *Q
`  f ) ) )  =  ( x  .Q  1Q ) )
71 mulidnq 7190 . . . . . . . . . . . . 13  |-  ( x  e.  Q.  ->  (
x  .Q  1Q )  =  x )
7271adantr 274 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  1Q )  =  x )
7368, 70, 723eqtrrd 2175 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  x  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )
7443, 73syl 14 . . . . . . . . . 10  |-  ( x 
<Q  f  ->  x  =  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) ) )
75 oveq2 5775 . . . . . . . . . . . 12  |-  ( g  =  ( x  .Q  ( *Q `  f ) )  ->  ( f  .Q  g )  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )
7675eqeq2d 2149 . . . . . . . . . . 11  |-  ( g  =  ( x  .Q  ( *Q `  f ) )  ->  ( x  =  ( f  .Q  g )  <->  x  =  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) ) ) )
7776rspcev 2784 . . . . . . . . . 10  |-  ( ( ( x  .Q  ( *Q `  f ) )  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )  ->  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) )
7865, 74, 77syl2anc 408 . . . . . . . . 9  |-  ( x 
<Q  f  ->  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) )
7978a1i 9 . . . . . . . 8  |-  ( f  e.  ( 1st `  A
)  ->  ( x  <Q  f  ->  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) )
8079ancld 323 . . . . . . 7  |-  ( f  e.  ( 1st `  A
)  ->  ( x  <Q  f  ->  ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
8180reximia 2525 . . . . . 6  |-  ( E. f  e.  ( 1st `  A ) x  <Q  f  ->  E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g ) ) )
8241, 81syl 14 . . . . 5  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
) ) )
8382ex 114 . . . 4  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  A )  ->  E. f  e.  ( 1st `  A
) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
84 prcdnql 7285 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( x  <Q  f  ->  x  e.  ( 1st `  A ) ) )
8510, 84sylan 281 . . . . . 6  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( x  <Q  f  ->  x  e.  ( 1st `  A ) ) )
8685adantrd 277 . . . . 5  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) )  ->  x  e.  ( 1st `  A ) ) )
8786rexlimdva 2547 . . . 4  |-  ( A  e.  P.  ->  ( E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
) )  ->  x  e.  ( 1st `  A
) ) )
8883, 87impbid 128 . . 3  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  A )  <->  E. f  e.  ( 1st `  A
) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
8935, 39, 883bitr4d 219 . 2  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  ( A  .P.  1P ) )  <->  x  e.  ( 1st `  A ) ) )
9089eqrdv 2135 1  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  1P ) )  =  ( 1st `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415    C_ wss 3066   <.cop 3525   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   1stc1st 6029   2ndc2nd 6030   Q.cnq 7081   1Qc1q 7082    .Q cmq 7084   *Qcrq 7085    <Q cltq 7086   P.cnp 7092   1Pc1p 7093    .P. cmp 7095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-inp 7267  df-i1p 7268  df-imp 7270
This theorem is referenced by:  1idpr  7393
  Copyright terms: Public domain W3C validator