ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idsr Unicode version

Theorem 1idsr 7569
Description: 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
Assertion
Ref Expression
1idsr  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )

Proof of Theorem 1idsr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7528 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5774 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
1R )  =  ( A  .R  1R )
)
3 id 19 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  ->  [ <. x ,  y
>. ]  ~R  =  A )
42, 3eqeq12d 2152 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
1R )  =  [ <. x ,  y >. ]  ~R  <->  ( A  .R  1R )  =  A
) )
5 df-1r 7533 . . . 4  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
65oveq2i 5778 . . 3  |-  ( [
<. x ,  y >. ]  ~R  .R  1R )  =  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
7 1pr 7355 . . . . . 6  |-  1P  e.  P.
8 addclpr 7338 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
97, 7, 8mp2an 422 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
10 mulsrpr 7547 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
119, 7, 10mpanr12 435 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
12 distrprg 7389 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  (
x  .P.  ( 1P  +P.  1P ) )  =  ( ( x  .P.  1P )  +P.  ( x  .P.  1P ) ) )
137, 7, 12mp3an23 1307 . . . . . . . 8  |-  ( x  e.  P.  ->  (
x  .P.  ( 1P  +P.  1P ) )  =  ( ( x  .P.  1P )  +P.  ( x  .P.  1P ) ) )
14 1idpr 7393 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  =  x )
1514oveq1d 5782 . . . . . . . 8  |-  ( x  e.  P.  ->  (
( x  .P.  1P )  +P.  ( x  .P.  1P ) )  =  ( x  +P.  ( x  .P.  1P ) ) )
1613, 15eqtr2d 2171 . . . . . . 7  |-  ( x  e.  P.  ->  (
x  +P.  ( x  .P.  1P ) )  =  ( x  .P.  ( 1P  +P.  1P ) ) )
17 distrprg 7389 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( ( y  .P. 
1P )  +P.  (
y  .P.  1P )
) )
187, 7, 17mp3an23 1307 . . . . . . . 8  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( ( y  .P. 
1P )  +P.  (
y  .P.  1P )
) )
19 1idpr 7393 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  =  y )
2019oveq1d 5782 . . . . . . . 8  |-  ( y  e.  P.  ->  (
( y  .P.  1P )  +P.  ( y  .P. 
1P ) )  =  ( y  +P.  (
y  .P.  1P )
) )
2118, 20eqtrd 2170 . . . . . . 7  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( y  +P.  (
y  .P.  1P )
) )
2216, 21oveqan12d 5786 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  ( x  .P.  1P ) )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  +P.  ( y  .P. 
1P ) ) ) )
23 simpl 108 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  x  e.  P. )
24 mulclpr 7373 . . . . . . . 8  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  .P.  1P )  e.  P. )
2523, 7, 24sylancl 409 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  .P.  1P )  e.  P. )
26 mulclpr 7373 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( y  .P.  ( 1P  +P.  1P ) )  e.  P. )
279, 26mpan2 421 . . . . . . . 8  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )
2827adantl 275 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( y  .P.  ( 1P  +P.  1P ) )  e.  P. )
29 addassprg 7380 . . . . . . 7  |-  ( ( x  e.  P.  /\  ( x  .P.  1P )  e.  P.  /\  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )  ->  (
( x  +P.  (
x  .P.  1P )
)  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) ) )
3023, 25, 28, 29syl3anc 1216 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  ( x  .P.  1P ) )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) ) )
31 mulclpr 7373 . . . . . . . 8  |-  ( ( x  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( x  .P.  ( 1P  +P.  1P ) )  e.  P. )
3223, 9, 31sylancl 409 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  .P.  ( 1P  +P.  1P ) )  e.  P. )
33 simpr 109 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  y  e.  P. )
34 mulclpr 7373 . . . . . . . 8  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  .P.  1P )  e.  P. )
3533, 7, 34sylancl 409 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( y  .P.  1P )  e.  P. )
36 addcomprg 7379 . . . . . . . 8  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( z  +P.  w
)  =  ( w  +P.  z ) )
3736adantl 275 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( z  +P.  w )  =  ( w  +P.  z ) )
38 addassprg 7380 . . . . . . . 8  |-  ( ( z  e.  P.  /\  w  e.  P.  /\  v  e.  P. )  ->  (
( z  +P.  w
)  +P.  v )  =  ( z  +P.  ( w  +P.  v
) ) )
3938adantl 275 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  +P.  w )  +P.  v )  =  ( z  +P.  ( w  +P.  v ) ) )
4032, 33, 35, 37, 39caov12d 5945 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  +P.  ( y  .P. 
1P ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) )
4122, 30, 403eqtr3d 2178 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) )
429, 31mpan2 421 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  ( 1P  +P.  1P ) )  e. 
P. )
437, 34mpan2 421 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  e.  P. )
44 addclpr 7338 . . . . . . . . 9  |-  ( ( ( x  .P.  ( 1P  +P.  1P ) )  e.  P.  /\  (
y  .P.  1P )  e.  P. )  ->  (
( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) )  e. 
P. )
4542, 43, 44syl2an 287 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) )  e.  P. )
467, 24mpan2 421 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  e.  P. )
47 addclpr 7338 . . . . . . . . 9  |-  ( ( ( x  .P.  1P )  e.  P.  /\  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )  ->  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
4846, 27, 47syl2an 287 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
4945, 48anim12i 336 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( (
( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) )  e. 
P.  /\  ( (
x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e.  P. )
)
50 enreceq 7537 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
)  e.  P.  /\  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. ) )  -> 
( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5149, 50syldan 280 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5251anidms 394 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5341, 52mpbird 166 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  [ <. x ,  y
>. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
5411, 53eqtr4d 2173 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. x ,  y >. ]  ~R  )
556, 54syl5eq 2182 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
1R )  =  [ <. x ,  y >. ]  ~R  )
561, 4, 55ecoptocl 6509 1  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   <.cop 3525  (class class class)co 5767   [cec 6420   P.cnp 7092   1Pc1p 7093    +P. cpp 7094    .P. cmp 7095    ~R cer 7097   R.cnr 7098   1Rc1r 7100    .R cmr 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-i1p 7268  df-iplp 7269  df-imp 7270  df-enr 7527  df-nr 7528  df-mr 7530  df-1r 7533
This theorem is referenced by:  pn0sr  7572  axi2m1  7676  ax1rid  7678  axcnre  7682
  Copyright terms: Public domain W3C validator