ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2pi Unicode version

Theorem 1lt2pi 6644
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
1lt2pi  |-  1o  <N  ( 1o  +N  1o )

Proof of Theorem 1lt2pi
StepHypRef Expression
1 1onn 6180 . . . . 5  |-  1o  e.  om
2 nna0 6138 . . . . 5  |-  ( 1o  e.  om  ->  ( 1o  +o  (/) )  =  1o )
31, 2ax-mp 7 . . . 4  |-  ( 1o 
+o  (/) )  =  1o
4 0lt1o 6107 . . . . 5  |-  (/)  e.  1o
5 peano1 4363 . . . . . 6  |-  (/)  e.  om
6 nnaord 6169 . . . . . 6  |-  ( (
(/)  e.  om  /\  1o  e.  om  /\  1o  e.  om )  ->  ( (/)  e.  1o  <->  ( 1o  +o  (/) )  e.  ( 1o  +o  1o ) ) )
75, 1, 1, 6mp3an 1269 . . . . 5  |-  ( (/)  e.  1o  <->  ( 1o  +o  (/) )  e.  ( 1o 
+o  1o ) )
84, 7mpbi 143 . . . 4  |-  ( 1o 
+o  (/) )  e.  ( 1o  +o  1o )
93, 8eqeltrri 2156 . . 3  |-  1o  e.  ( 1o  +o  1o )
10 1pi 6619 . . . 4  |-  1o  e.  N.
11 addpiord 6620 . . . 4  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  =  ( 1o  +o  1o ) )
1210, 10, 11mp2an 417 . . 3  |-  ( 1o 
+N  1o )  =  ( 1o  +o  1o )
139, 12eleqtrri 2158 . 2  |-  1o  e.  ( 1o  +N  1o )
14 addclpi 6631 . . . 4  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  e.  N. )
1510, 10, 14mp2an 417 . . 3  |-  ( 1o 
+N  1o )  e. 
N.
16 ltpiord 6623 . . 3  |-  ( ( 1o  e.  N.  /\  ( 1o  +N  1o )  e.  N. )  ->  ( 1o  <N  ( 1o  +N  1o )  <->  1o  e.  ( 1o  +N  1o ) ) )
1710, 15, 16mp2an 417 . 2  |-  ( 1o 
<N  ( 1o  +N  1o ) 
<->  1o  e.  ( 1o 
+N  1o ) )
1813, 17mpbir 144 1  |-  1o  <N  ( 1o  +N  1o )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1285    e. wcel 1434   (/)c0 3267   class class class wbr 3805   omcom 4359  (class class class)co 5563   1oc1o 6078    +o coa 6082   N.cnpi 6576    +N cpli 6577    <N clti 6579
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-eprel 4072  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-1o 6085  df-oadd 6089  df-ni 6608  df-pli 6609  df-lti 6611
This theorem is referenced by:  1lt2nq  6710
  Copyright terms: Public domain W3C validator