![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nn0 | Unicode version |
Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
1nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8117 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 8363 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-1re 7132 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-int 3645 df-inn 8107 df-n0 8356 |
This theorem is referenced by: peano2nn0 8395 deccl 8572 10nn0 8575 numsucc 8597 numadd 8604 numaddc 8605 11multnc 8625 6p5lem 8627 6p6e12 8631 7p5e12 8634 8p4e12 8639 9p2e11 8644 9p3e12 8645 10p10e20 8652 4t4e16 8656 5t2e10 8657 5t4e20 8659 6t3e18 8662 6t4e24 8663 7t3e21 8667 7t4e28 8668 8t3e24 8673 9t3e27 8680 9t9e81 8686 nn01to3 8783 elfzom1elp1fzo 9288 fzo0sn0fzo1 9307 expn1ap0 9583 nn0expcl 9587 sqval 9631 sq10 9737 nn0opthlem1d 9744 fac2 9755 bccl 9791 sizesng 9822 1elfz0size 9830 dvds1 10398 3dvds2dec 10410 1kp2ke3k 10713 ex-fac 10716 |
Copyright terms: Public domain | W3C validator |