![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1pi | Unicode version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1pi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6152 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1n0 6074 |
. 2
![]() ![]() ![]() ![]() | |
3 | elni 6549 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mpbir2an 884 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-nul 3906 ax-pow 3950 ax-pr 3966 ax-un 4190 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3253 df-pw 3386 df-sn 3406 df-pr 3407 df-uni 3604 df-int 3639 df-suc 4128 df-iom 4334 df-1o 6059 df-ni 6545 |
This theorem is referenced by: mulidpi 6559 1lt2pi 6581 nlt1pig 6582 indpi 6583 1nq 6607 1qec 6629 mulidnq 6630 1lt2nq 6647 archnqq 6658 prarloclemarch 6659 prarloclemarch2 6660 nnnq 6663 ltnnnq 6664 nq0m0r 6697 nq0a0 6698 addpinq1 6705 nq02m 6706 prarloclemlt 6734 prarloclemlo 6735 prarloclemn 6740 prarloclemcalc 6743 nqprm 6783 caucvgprlemm 6909 caucvgprprlemml 6935 caucvgprprlemmu 6936 caucvgsrlemasr 7017 caucvgsr 7029 nntopi 7111 |
Copyright terms: Public domain | W3C validator |