ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st2nd Unicode version

Theorem 1st2nd 5859
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
Assertion
Ref Expression
1st2nd  |-  ( ( Rel  B  /\  A  e.  B )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )

Proof of Theorem 1st2nd
StepHypRef Expression
1 df-rel 4399 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
2 ssel2 3004 . . 3  |-  ( ( B  C_  ( _V  X.  _V )  /\  A  e.  B )  ->  A  e.  ( _V  X.  _V ) )
31, 2sylanb 278 . 2  |-  ( ( Rel  B  /\  A  e.  B )  ->  A  e.  ( _V  X.  _V ) )
4 1st2nd2 5853 . 2  |-  ( A  e.  ( _V  X.  _V )  ->  A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >. )
53, 4syl 14 1  |-  ( ( Rel  B  /\  A  e.  B )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   _Vcvv 2610    C_ wss 2983   <.cop 3420    X. cxp 4390   Rel wrel 4397   ` cfv 4953   1stc1st 5817   2ndc2nd 5818
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-sbc 2826  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-mpt 3862  df-id 4077  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-iota 4918  df-fun 4955  df-fv 4961  df-1st 5819  df-2nd 5820
This theorem is referenced by:  2ndrn  5861  1st2ndbr  5862  elopabi  5873  cnvf1olem  5897
  Copyright terms: Public domain W3C validator