ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st2nd2 Unicode version

Theorem 1st2nd2 5832
Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
Assertion
Ref Expression
1st2nd2  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )

Proof of Theorem 1st2nd2
StepHypRef Expression
1 elxp6 5827 . 2  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
21simplbi 268 1  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   <.cop 3409    X. cxp 4369   ` cfv 4932   1stc1st 5796   2ndc2nd 5797
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-iota 4897  df-fun 4934  df-fv 4940  df-1st 5798  df-2nd 5799
This theorem is referenced by:  xpopth  5833  eqop  5834  2nd1st  5837  1st2nd  5838  dfplpq2  6606  dfmpq2  6607  enqbreq2  6609  enqdc1  6614  preqlu  6724  prop  6727  elnp1st2nd  6728  cauappcvgprlemladd  6910  elreal2  7061  cnref1o  8814  frecuzrdgrrn  9490  frec2uzrdg  9491  frecuzrdgrcl  9492  frecuzrdgsuc  9496  frecuzrdgrclt  9497  frecuzrdgg  9498  frecuzrdgdomlem  9499  frecuzrdgfunlem  9501  frecuzrdgsuctlem  9505  iseqvalt  9532  eucalgval  10580  eucalginv  10582  eucalglt  10583  eucialg  10585  sqpweven  10697  2sqpwodd  10698
  Copyright terms: Public domain W3C validator