![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2cnd | Unicode version |
Description: 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2cnd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8177 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-resscn 7130 ax-1re 7132 ax-addrcl 7135 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 df-2 8165 |
This theorem is referenced by: cnm2m1cnm3 8349 xp1d2m1eqxm1d2 8350 nneo 8531 zeo2 8534 2tnp1ge0ge0 9383 flhalf 9384 q2txmodxeq0 9466 mulbinom2 9686 binom3 9687 zesq 9688 sqoddm1div8 9722 cvg1nlemcxze 10006 resqrexlemover 10034 resqrexlemlo 10037 resqrexlemcalc1 10038 resqrexlemnm 10042 amgm2 10142 maxabslemab 10230 maxabslemlub 10231 max0addsup 10243 even2n 10418 oddm1even 10419 oddp1even 10420 mulsucdiv2z 10429 ltoddhalfle 10437 m1exp1 10445 nn0enne 10446 flodddiv4 10478 flodddiv4t2lthalf 10481 sqrt2irrlem 10684 sqrt2irr 10685 pw2dvdslemn 10687 pw2dvdseulemle 10689 oddpwdc 10696 sqrt2irraplemnn 10701 oddennn 10730 evenennn 10731 |
Copyright terms: Public domain | W3C validator |