![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2exbii | Unicode version |
Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
exbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
2exbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbii.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | exbii 1537 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | exbii 1537 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-ial 1468 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 3exbii 1539 19.42vvvv 1832 3exdistr 1834 cbvex4v 1847 ee4anv 1851 ee8anv 1852 sbel2x 1916 2eu4 2035 rexcomf 2517 reean 2523 ceqsex3v 2642 ceqsex4v 2643 ceqsex8v 2645 copsexg 4007 opelopabsbALT 4022 opabm 4043 uniuni 4209 rabxp 4406 elxp3 4420 elvv 4428 elvvv 4429 rexiunxp 4506 elcnv2 4541 cnvuni 4549 coass 4869 fununi 4998 dfmpt3 5052 dfoprab2 5583 dmoprab 5616 rnoprab 5618 mpt2mptx 5626 resoprab 5628 ovi3 5668 ov6g 5669 oprabex3 5787 xpassen 6374 enq0enq 6683 enq0sym 6684 enq0tr 6686 ltresr 7069 |
Copyright terms: Public domain | W3C validator |