![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version |
Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
2nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 8312 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 8415 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-cnex 7181 ax-resscn 7182 ax-1re 7184 ax-addrcl 7187 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-br 3806 df-iota 4917 df-fv 4960 df-ov 5566 df-inn 8159 df-2 8217 df-n0 8408 |
This theorem is referenced by: nn0n0n1ge2 8551 7p6e13 8687 8p3e11 8690 8p5e13 8692 9p3e12 8697 9p4e13 8698 4t3e12 8707 4t4e16 8708 5t3e15 8710 5t5e25 8712 6t3e18 8714 6t5e30 8716 7t3e21 8719 7t4e28 8720 7t5e35 8721 7t6e42 8722 7t7e49 8723 8t3e24 8725 8t4e32 8726 8t5e40 8727 9t3e27 8732 9t4e36 8733 9t8e72 8737 9t9e81 8738 decbin3 8751 2eluzge0 8796 nn01to3 8835 fzo0to42pr 9358 nn0sqcl 9652 sqmul 9687 resqcl 9692 zsqcl 9695 cu2 9722 i3 9725 i4 9726 binom3 9739 nn0opthlem1d 9796 fac3 9808 faclbnd2 9818 abssq 10168 sqabs 10169 oexpneg 10484 oddge22np1 10488 1kp2ke3k 10822 ex-fac 10825 |
Copyright terms: Public domain | W3C validator |