ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant2r Unicode version

Theorem 3adant2r 1165
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant2r  |-  ( (
ph  /\  ( ps  /\ 
ta )  /\  ch )  ->  th )

Proof of Theorem 3adant2r
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213com12 1143 . . 3  |-  ( ( ps  /\  ph  /\  ch )  ->  th )
323adant1r 1163 . 2  |-  ( ( ( ps  /\  ta )  /\  ph  /\  ch )  ->  th )
433com12 1143 1  |-  ( (
ph  /\  ( ps  /\ 
ta )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 922
This theorem is referenced by:  caovimo  5725  mulassnqg  6636  prarloc  6755  ltexprlemfl  6861  ltexprlemfu  6863  addasssrg  6995  axaddass  7100
  Copyright terms: Public domain W3C validator