![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4g | Unicode version |
Description: More general version of 3bitr4i 210. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4g.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4g.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr4g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr4g.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5bb 190 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr4g.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | syl6bbr 196 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: bibi1d 231 pm5.32rd 439 orbi1d 738 dcbid 782 pm4.14dc 821 orbididc 895 3orbi123d 1243 3anbi123d 1244 xorbi2d 1312 xorbi1d 1313 nfbidf 1473 drnf1 1662 drnf2 1663 drsb1 1721 sbal2 1940 eubidh 1948 eubid 1949 mobidh 1976 mobid 1977 eqeq1 2088 eqeq2 2091 eleq1 2142 eleq2 2143 nfceqdf 2219 drnfc1 2236 drnfc2 2237 neeq1 2259 neeq2 2260 neleq1 2344 neleq2 2345 ralbida 2363 rexbida 2364 ralbidv2 2371 rexbidv2 2372 r19.21t 2437 r19.23t 2468 reubida 2536 rmobida 2541 raleqf 2546 rexeqf 2547 reueq1f 2548 rmoeq1f 2549 cbvraldva2 2582 cbvrexdva2 2583 dfsbcq 2818 sbcbi2 2865 sbcbid 2872 eqsbc3r 2875 sbcabel 2896 sbnfc2 2963 ssconb 3106 uneq1 3120 ineq1 3167 difin2 3233 reuun2 3254 reldisj 3302 undif4 3313 disjssun 3314 sbcssg 3358 eltpg 3446 raltpg 3453 rextpg 3454 r19.12sn 3466 opeq1 3578 opeq2 3579 intmin4 3672 dfiun2g 3718 iindif2m 3753 iinin2m 3754 breq 3795 breq1 3796 breq2 3797 treq 3889 opthg2 4002 poeq1 4062 soeq1 4078 frforeq1 4106 freq1 4107 frforeq2 4108 freq2 4109 frforeq3 4110 weeq1 4119 weeq2 4120 ordeq 4135 limeq 4140 rabxfrd 4227 iunpw 4237 opthprc 4417 releq 4448 sbcrel 4452 eqrel 4455 eqrelrel 4467 xpiindim 4501 brcnvg 4544 brresg 4648 resieq 4650 xpcanm 4790 xpcan2m 4791 dmsnopg 4822 dfco2a 4851 cnvpom 4890 cnvsom 4891 iotaeq 4905 sniota 4924 sbcfung 4955 fneq1 5018 fneq2 5019 feq1 5061 feq2 5062 feq3 5063 sbcfng 5075 sbcfg 5076 f1eq1 5118 f1eq2 5119 f1eq3 5120 foeq1 5133 foeq2 5134 foeq3 5135 f1oeq1 5148 f1oeq2 5149 f1oeq3 5150 fun11iun 5178 mpteqb 5293 dffo3 5346 fmptco 5362 dff13 5439 f1imaeq 5446 f1eqcocnv 5462 fliftcnv 5466 isoeq1 5472 isoeq2 5473 isoeq3 5474 isoeq4 5475 isoeq5 5476 isocnv2 5483 acexmid 5542 fnotovb 5579 mpt2eq123 5595 ottposg 5904 dmtpos 5905 smoeq 5939 nnacan 6151 nnmcan 6158 ereq1 6179 ereq2 6180 elecg 6210 ereldm 6215 enfi 6408 creur 8103 eqreznegel 8780 ltxr 8927 icoshftf1o 9089 elfzm11 9184 elfzomelpfzo 9317 nn0ennn 9515 nnesq 9689 rexfiuz 10013 cau4 10140 sumeq2d 10334 sumeq2 10335 dvdsflip 10396 divgcdcoprm0 10627 cbvrald 10749 bj-dcbi 10877 |
Copyright terms: Public domain | W3C validator |