![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitrd | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
Ref | Expression |
---|---|
3bitrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitrd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitrd 186 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitrd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitrd 186 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: sbceqal 2870 sbcnel12g 2924 elxp4 4838 elxp5 4839 f1eq123d 5152 foeq123d 5153 f1oeq123d 5154 ofrfval 5751 eloprabi 5853 smoeq 5939 ecidg 6236 enqbreq2 6609 ltanqg 6652 caucvgprprlemexb 6959 caucvgsrlemgt1 7033 caucvgsrlemoffres 7038 ltrennb 7084 apneg 7778 mulext1 7779 ltdiv23 8037 lediv23 8038 halfpos 8329 addltmul 8334 div4p1lem1div2 8351 ztri3or 8475 supminfex 8766 iccf1o 9102 fzshftral 9201 fzoshftral 9324 2tnp1ge0ge0 9383 sizeen1 9823 cjap 9931 negfi 10248 dvdssub 10385 addmodlteqALT 10404 dvdsmod 10407 oddp1even 10420 nn0o1gt2 10449 nn0oddm1d2 10453 infssuzex 10489 cncongr1 10629 cncongr2 10630 |
Copyright terms: Public domain | W3C validator |