![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4a.1 |
![]() ![]() ![]() ![]() |
3eqtr4a.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr4a.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr4a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4a.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtr4a.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl6eq 2130 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtr4a.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr4d 2117 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 |
This theorem is referenced by: uniintsnr 3680 fndmdifcom 5305 offres 5793 1stval2 5813 2ndval2 5814 ecovcom 6279 ecovass 6281 ecovdi 6283 zeo 8533 xnegneg 8976 fzsuc2 9172 expnegap0 9581 facp1 9754 bcpasc 9790 absexp 10103 gcdcom 10509 gcd0id 10514 dfgcd3 10543 gcdass 10548 lcmcom 10590 lcmneg 10600 lcmass 10611 sqrt2irrlem 10684 |
Copyright terms: Public domain | W3C validator |