ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp2 Unicode version

Theorem 3exp2 1157
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3exp2.1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )
Assertion
Ref Expression
3exp2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )

Proof of Theorem 3exp2
StepHypRef Expression
1 3exp2.1 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )
21ex 113 . 2  |-  ( ph  ->  ( ( ps  /\  ch  /\  th )  ->  ta ) )
323expd 1156 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 922
This theorem is referenced by:  3anassrs  1161  po2nr  4072  fliftfund  5468  tfrlemibxssdm  5976  tfr1onlembxssdm  5992  tfrcllembxssdm  6005
  Copyright terms: Public domain W3C validator