ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3halfnz Unicode version

Theorem 3halfnz 9148
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
3halfnz  |-  -.  (
3  /  2 )  e.  ZZ

Proof of Theorem 3halfnz
StepHypRef Expression
1 1z 9080 . 2  |-  1  e.  ZZ
2 2cn 8791 . . . . 5  |-  2  e.  CC
32mulid2i 7769 . . . 4  |-  ( 1  x.  2 )  =  2
4 2lt3 8890 . . . 4  |-  2  <  3
53, 4eqbrtri 3949 . . 3  |-  ( 1  x.  2 )  <  3
6 1re 7765 . . . 4  |-  1  e.  RR
7 3re 8794 . . . 4  |-  3  e.  RR
8 2re 8790 . . . . 5  |-  2  e.  RR
9 2pos 8811 . . . . 5  |-  0  <  2
108, 9pm3.2i 270 . . . 4  |-  ( 2  e.  RR  /\  0  <  2 )
11 ltmuldiv 8632 . . . 4  |-  ( ( 1  e.  RR  /\  3  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 1  x.  2 )  <  3  <->  1  <  (
3  /  2 ) ) )
126, 7, 10, 11mp3an 1315 . . 3  |-  ( ( 1  x.  2 )  <  3  <->  1  <  ( 3  /  2 ) )
135, 12mpbi 144 . 2  |-  1  <  ( 3  /  2
)
14 3lt4 8892 . . . 4  |-  3  <  4
15 2t2e4 8874 . . . . 5  |-  ( 2  x.  2 )  =  4
1615breq2i 3937 . . . 4  |-  ( 3  <  ( 2  x.  2 )  <->  3  <  4 )
1714, 16mpbir 145 . . 3  |-  3  <  ( 2  x.  2 )
18 1p1e2 8837 . . . . 5  |-  ( 1  +  1 )  =  2
1918breq2i 3937 . . . 4  |-  ( ( 3  /  2 )  <  ( 1  +  1 )  <->  ( 3  /  2 )  <  2 )
20 ltdivmul 8634 . . . . 5  |-  ( ( 3  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 3  /  2 )  <  2  <->  3  <  (
2  x.  2 ) ) )
217, 8, 10, 20mp3an 1315 . . . 4  |-  ( ( 3  /  2 )  <  2  <->  3  <  ( 2  x.  2 ) )
2219, 21bitri 183 . . 3  |-  ( ( 3  /  2 )  <  ( 1  +  1 )  <->  3  <  ( 2  x.  2 ) )
2317, 22mpbir 145 . 2  |-  ( 3  /  2 )  < 
( 1  +  1 )
24 btwnnz 9145 . 2  |-  ( ( 1  e.  ZZ  /\  1  <  ( 3  / 
2 )  /\  (
3  /  2 )  <  ( 1  +  1 ) )  ->  -.  ( 3  /  2
)  e.  ZZ )
251, 13, 23, 24mp3an 1315 1  |-  -.  (
3  /  2 )  e.  ZZ
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    / cdiv 8432   2c2 8771   3c3 8772   4c4 8773   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055
This theorem is referenced by:  nn0o1gt2  11602
  Copyright terms: Public domain W3C validator