ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impdi Unicode version

Theorem 3impdi 1225
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1  |-  ( ( ( ph  /\  ps )  /\  ( ph  /\  ch ) )  ->  th )
Assertion
Ref Expression
3impdi  |-  ( (
ph  /\  ps  /\  ch )  ->  th )

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( ph  /\  ch ) )  ->  th )
21anandis 557 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
323impb 1135 1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 922
This theorem is referenced by:  ecovdi  6283  ecovidi  6284  distrpig  6585  mulcanenq  6637  mulcanenq0ec  6697  distrnq0  6711  axltadd  7249  absmulgcd  10550
  Copyright terms: Public domain W3C validator