ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impexp Unicode version

Theorem 3impexp 1342
Description: impexp 254 with a 3-conjunct antecedent. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
3impexp  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  th )  <->  (
ph  ->  ( ps  ->  ( ch  ->  th )
) ) )

Proof of Theorem 3impexp
StepHypRef Expression
1 id 19 . . 3  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  th )  ->  ( ( ph  /\  ps  /\  ch )  ->  th ) )
213expd 1132 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  th )  ->  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) ) )
3 id 19 . . 3  |-  ( (
ph  ->  ( ps  ->  ( ch  ->  th )
) )  ->  ( ph  ->  ( ps  ->  ( ch  ->  th )
) ) )
433impd 1129 . 2  |-  ( (
ph  ->  ( ps  ->  ( ch  ->  th )
) )  ->  (
( ph  /\  ps  /\  ch )  ->  th )
)
52, 4impbii 121 1  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  th )  <->  (
ph  ->  ( ps  ->  ( ch  ->  th )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102    /\ w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by:  3impexpbicom  1343
  Copyright terms: Public domain W3C validator