![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3lcm2e6 | Unicode version |
Description: The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
3lcm2e6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8212 |
. . . . . 6
![]() ![]() ![]() ![]() | |
2 | 2lt3 8305 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | 1, 2 | gtneii 7309 |
. . . . 5
![]() ![]() ![]() ![]() |
4 | 3prm 10701 |
. . . . . 6
![]() ![]() ![]() ![]() | |
5 | 2prm 10700 |
. . . . . 6
![]() ![]() ![]() ![]() | |
6 | prmrp 10715 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | mp2an 417 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | mpbir 144 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | oveq2i 5575 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 3nn 8297 |
. . . 4
![]() ![]() ![]() ![]() | |
11 | 2nn 8296 |
. . . 4
![]() ![]() ![]() ![]() | |
12 | lcmgcdnn 10655 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 10, 11, 12 | mp2an 417 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 10 | nnzi 8489 |
. . . . . 6
![]() ![]() ![]() ![]() |
15 | 11 | nnzi 8489 |
. . . . . 6
![]() ![]() ![]() ![]() |
16 | lcmcl 10645 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 14, 15, 16 | mp2an 417 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | nn0cni 8403 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18 | mulid1i 7219 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 9, 13, 19 | 3eqtr3ri 2112 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 3t2e6 8291 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | 20, 21 | eqtri 2103 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3914 ax-sep 3917 ax-nul 3925 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-iinf 4358 ax-cnex 7165 ax-resscn 7166 ax-1cn 7167 ax-1re 7168 ax-icn 7169 ax-addcl 7170 ax-addrcl 7171 ax-mulcl 7172 ax-mulrcl 7173 ax-addcom 7174 ax-mulcom 7175 ax-addass 7176 ax-mulass 7177 ax-distr 7178 ax-i2m1 7179 ax-0lt1 7180 ax-1rid 7181 ax-0id 7182 ax-rnegex 7183 ax-precex 7184 ax-cnre 7185 ax-pre-ltirr 7186 ax-pre-ltwlin 7187 ax-pre-lttrn 7188 ax-pre-apti 7189 ax-pre-ltadd 7190 ax-pre-mulgt0 7191 ax-pre-mulext 7192 ax-arch 7193 ax-caucvg 7194 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2826 df-csb 2919 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-nul 3269 df-if 3370 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-iun 3701 df-br 3807 df-opab 3861 df-mpt 3862 df-tr 3897 df-id 4077 df-po 4080 df-iso 4081 df-iord 4150 df-on 4152 df-ilim 4153 df-suc 4155 df-iom 4361 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-rn 4403 df-res 4404 df-ima 4405 df-iota 4918 df-fun 4955 df-fn 4956 df-f 4957 df-f1 4958 df-fo 4959 df-f1o 4960 df-fv 4961 df-isom 4962 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-1st 5819 df-2nd 5820 df-recs 5975 df-frec 6061 df-1o 6086 df-2o 6087 df-er 6194 df-en 6310 df-sup 6492 df-inf 6493 df-pnf 7253 df-mnf 7254 df-xr 7255 df-ltxr 7256 df-le 7257 df-sub 7384 df-neg 7385 df-reap 7778 df-ap 7785 df-div 7864 df-inn 8143 df-2 8201 df-3 8202 df-4 8203 df-5 8204 df-6 8205 df-n0 8392 df-z 8469 df-uz 8737 df-q 8822 df-rp 8852 df-fz 9142 df-fzo 9266 df-fl 9388 df-mod 9441 df-iseq 9558 df-iexp 9609 df-cj 9914 df-re 9915 df-im 9916 df-rsqrt 10069 df-abs 10070 df-dvds 10388 df-gcd 10530 df-lcm 10634 df-prm 10681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |