ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6 Unicode version

Theorem 3lcm2e6 10730
Description: The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6  |-  ( 3 lcm  2 )  =  6

Proof of Theorem 3lcm2e6
StepHypRef Expression
1 2re 8212 . . . . . 6  |-  2  e.  RR
2 2lt3 8305 . . . . . 6  |-  2  <  3
31, 2gtneii 7309 . . . . 5  |-  3  =/=  2
4 3prm 10701 . . . . . 6  |-  3  e.  Prime
5 2prm 10700 . . . . . 6  |-  2  e.  Prime
6 prmrp 10715 . . . . . 6  |-  ( ( 3  e.  Prime  /\  2  e.  Prime )  ->  (
( 3  gcd  2
)  =  1  <->  3  =/=  2 ) )
74, 5, 6mp2an 417 . . . . 5  |-  ( ( 3  gcd  2 )  =  1  <->  3  =/=  2 )
83, 7mpbir 144 . . . 4  |-  ( 3  gcd  2 )  =  1
98oveq2i 5575 . . 3  |-  ( ( 3 lcm  2 )  x.  ( 3  gcd  2
) )  =  ( ( 3 lcm  2 )  x.  1 )
10 3nn 8297 . . . 4  |-  3  e.  NN
11 2nn 8296 . . . 4  |-  2  e.  NN
12 lcmgcdnn 10655 . . . 4  |-  ( ( 3  e.  NN  /\  2  e.  NN )  ->  ( ( 3 lcm  2 )  x.  ( 3  gcd  2 ) )  =  ( 3  x.  2 ) )
1310, 11, 12mp2an 417 . . 3  |-  ( ( 3 lcm  2 )  x.  ( 3  gcd  2
) )  =  ( 3  x.  2 )
1410nnzi 8489 . . . . . 6  |-  3  e.  ZZ
1511nnzi 8489 . . . . . 6  |-  2  e.  ZZ
16 lcmcl 10645 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3 lcm  2 )  e.  NN0 )
1714, 15, 16mp2an 417 . . . . 5  |-  ( 3 lcm  2 )  e.  NN0
1817nn0cni 8403 . . . 4  |-  ( 3 lcm  2 )  e.  CC
1918mulid1i 7219 . . 3  |-  ( ( 3 lcm  2 )  x.  1 )  =  ( 3 lcm  2 )
209, 13, 193eqtr3ri 2112 . 2  |-  ( 3 lcm  2 )  =  ( 3  x.  2 )
21 3t2e6 8291 . 2  |-  ( 3  x.  2 )  =  6
2220, 21eqtri 2103 1  |-  ( 3 lcm  2 )  =  6
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1285    e. wcel 1434    =/= wne 2249  (class class class)co 5564   1c1 7080    x. cmul 7084   NNcn 8142   2c2 8192   3c3 8193   6c6 8196   NN0cn0 8391   ZZcz 8468    gcd cgcd 10529   lcm clcm 10633   Primecprime 10680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358  ax-cnex 7165  ax-resscn 7166  ax-1cn 7167  ax-1re 7168  ax-icn 7169  ax-addcl 7170  ax-addrcl 7171  ax-mulcl 7172  ax-mulrcl 7173  ax-addcom 7174  ax-mulcom 7175  ax-addass 7176  ax-mulass 7177  ax-distr 7178  ax-i2m1 7179  ax-0lt1 7180  ax-1rid 7181  ax-0id 7182  ax-rnegex 7183  ax-precex 7184  ax-cnre 7185  ax-pre-ltirr 7186  ax-pre-ltwlin 7187  ax-pre-lttrn 7188  ax-pre-apti 7189  ax-pre-ltadd 7190  ax-pre-mulgt0 7191  ax-pre-mulext 7192  ax-arch 7193  ax-caucvg 7194
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-if 3370  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-id 4077  df-po 4080  df-iso 4081  df-iord 4150  df-on 4152  df-ilim 4153  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-isom 4962  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-frec 6061  df-1o 6086  df-2o 6087  df-er 6194  df-en 6310  df-sup 6492  df-inf 6493  df-pnf 7253  df-mnf 7254  df-xr 7255  df-ltxr 7256  df-le 7257  df-sub 7384  df-neg 7385  df-reap 7778  df-ap 7785  df-div 7864  df-inn 8143  df-2 8201  df-3 8202  df-4 8203  df-5 8204  df-6 8205  df-n0 8392  df-z 8469  df-uz 8737  df-q 8822  df-rp 8852  df-fz 9142  df-fzo 9266  df-fl 9388  df-mod 9441  df-iseq 9558  df-iexp 9609  df-cj 9914  df-re 9915  df-im 9916  df-rsqrt 10069  df-abs 10070  df-dvds 10388  df-gcd 10530  df-lcm 10634  df-prm 10681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator