ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix1 Unicode version

Theorem 3mix1 1108
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix1  |-  ( ph  ->  ( ph  \/  ps  \/  ch ) )

Proof of Theorem 3mix1
StepHypRef Expression
1 orc 666 . 2  |-  ( ph  ->  ( ph  \/  ( ps  \/  ch ) ) )
2 3orass 923 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
31, 2sylibr 132 1  |-  ( ph  ->  ( ph  \/  ps  \/  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 662    \/ w3o 919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115  df-3or 921
This theorem is referenced by:  3mix2  1109  3mix3  1110  3mix1i  1111  3mix1d  1114  3jaob  1234  nntri3or  6137  elnn0z  8445  nn01to3  8783  fztri3or  9134
  Copyright terms: Public domain W3C validator