ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix2 Unicode version

Theorem 3mix2 1109
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2  |-  ( ph  ->  ( ps  \/  ph  \/  ch ) )

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1108 . 2  |-  ( ph  ->  ( ph  \/  ch  \/  ps ) )
2 3orrot 926 . 2  |-  ( ( ps  \/  ph  \/  ch )  <->  ( ph  \/  ch  \/  ps ) )
31, 2sylibr 132 1  |-  ( ph  ->  ( ps  \/  ph  \/  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115  df-3or 921
This theorem is referenced by:  3mix2i  1112  3mix2d  1115  3jaob  1234  funtpg  4981  elnn0z  8445  nn01to3  8783
  Copyright terms: Public domain W3C validator