ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix3 Unicode version

Theorem 3mix3 1110
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3  |-  ( ph  ->  ( ps  \/  ch  \/  ph ) )

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1108 . 2  |-  ( ph  ->  ( ph  \/  ps  \/  ch ) )
2 3orrot 926 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )
31, 2sylib 120 1  |-  ( ph  ->  ( ps  \/  ch  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115  df-3or 921
This theorem is referenced by:  3mix3i  1113  3mix3d  1116  3jaob  1234  tpid3g  3513  funtpg  4981  nn01to3  8783  fztri3or  9134  qbtwnxr  9344  sizefiv01gt1  9806
  Copyright terms: Public domain W3C validator