![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3sstr4i | Unicode version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 |
![]() ![]() ![]() ![]() |
3sstr4.2 |
![]() ![]() ![]() ![]() |
3sstr4.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3sstr4i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | 3sstr4.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 3sstr4.3 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | sseq12i 3034 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbir 144 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-in 2988 df-ss 2995 |
This theorem is referenced by: undif2ss 3335 pwsnss 3615 iinuniss 3778 brab2a 4439 rncoss 4650 imassrn 4729 rnin 4783 inimass 4790 imadiflem 5029 imainlem 5031 ssoprab2i 5644 npsspw 6775 axresscn 7142 |
Copyright terms: Public domain | W3C validator |