![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4nn0 | Unicode version |
Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
4nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 8298 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 8399 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-cnex 7165 ax-resscn 7166 ax-1re 7168 ax-addrcl 7171 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2987 df-in 2989 df-ss 2996 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-br 3807 df-iota 4918 df-fv 4961 df-ov 5567 df-inn 8143 df-2 8201 df-3 8202 df-4 8203 df-n0 8392 |
This theorem is referenced by: 6p5e11 8666 7p5e12 8670 8p5e13 8676 8p7e15 8678 9p5e14 8683 9p6e15 8684 4t3e12 8691 4t4e16 8692 5t5e25 8696 6t4e24 8699 6t5e30 8700 7t3e21 8703 7t5e35 8705 7t7e49 8707 8t3e24 8709 8t4e32 8710 8t5e40 8711 8t6e48 8712 8t7e56 8713 8t8e64 8714 9t5e45 8718 9t6e54 8719 9t7e63 8720 decbin3 8735 fzo0to42pr 9342 4bc3eq4 9833 ex-fac 10809 ex-bc 10810 |
Copyright terms: Public domain | W3C validator |