![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4pos | Unicode version |
Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4pos |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 8180 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1re 7180 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 3pos 8200 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 0lt1 7303 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | addgt0ii 7659 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | df-4 8167 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | breqtrri 3818 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 3793 (class class class)co 5543
![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-addcom 7138 ax-addass 7140 ax-i2m1 7143 ax-0lt1 7144 ax-0id 7146 ax-rnegex 7147 ax-pre-lttrn 7152 ax-pre-ltadd 7154 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-xp 4377 df-iota 4897 df-fv 4940 df-ov 5546 df-pnf 7217 df-mnf 7218 df-ltxr 7220 df-2 8165 df-3 8166 df-4 8167 |
This theorem is referenced by: 4ne0 8204 4ap0 8205 5pos 8206 8th4div3 8317 div4p1lem1div2 8351 fldiv4p1lem1div2 9387 iexpcyc 9676 faclbnd2 9766 resqrexlemover 10034 resqrexlemcalc1 10038 resqrexlemcalc2 10039 resqrexlemcalc3 10040 resqrexlemnm 10042 resqrexlemga 10047 sqrt2gt1lt2 10073 flodddiv4 10478 |
Copyright terms: Public domain | W3C validator |