![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4re | Unicode version |
Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4re |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8156 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3re 8169 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1re 7169 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | readdcli 7183 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltri 2152 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 ax-1re 7121 ax-addrcl 7124 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 df-2 8154 df-3 8155 df-4 8156 |
This theorem is referenced by: 4cn 8173 5re 8174 4ne0 8193 4ap0 8194 5pos 8195 2lt4 8261 1lt4 8262 4lt5 8263 3lt5 8264 2lt5 8265 1lt5 8266 4lt6 8268 3lt6 8269 4lt7 8274 3lt7 8275 4lt8 8281 3lt8 8282 4lt9 8289 3lt9 8290 8th4div3 8306 div4p1lem1div2 8340 4lt10 8682 3lt10 8683 fzo0to42pr 9295 fldiv4p1lem1div2 9376 faclbnd2 9755 4bc2eq6 9787 resqrexlemover 10023 resqrexlemcalc1 10027 resqrexlemcalc2 10028 resqrexlemcalc3 10029 resqrexlemnm 10031 resqrexlemga 10036 sqrt2gt1lt2 10062 amgm2 10131 flodddiv4 10467 |
Copyright terms: Public domain | W3C validator |