![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5nn0 | Unicode version |
Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
5nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 8333 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 8433 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-cnex 7199 ax-resscn 7200 ax-1re 7202 ax-addrcl 7205 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-br 3806 df-iota 4917 df-fv 4960 df-ov 5567 df-inn 8177 df-2 8235 df-3 8236 df-4 8237 df-5 8238 df-n0 8426 |
This theorem is referenced by: 6p6e12 8701 7p6e13 8705 8p6e14 8711 8p8e16 8713 9p6e15 8718 9p7e16 8719 5t2e10 8727 5t3e15 8728 5t4e20 8729 5t5e25 8730 6t6e36 8735 7t5e35 8739 7t6e42 8740 8t6e48 8746 8t8e64 8748 9t5e45 8752 9t6e54 8753 9t7e63 8754 ex-fac 10843 |
Copyright terms: Public domain | W3C validator |