![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6nn0 | Unicode version |
Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 8264 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 8363 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-cnex 7129 ax-resscn 7130 ax-1re 7132 ax-addrcl 7135 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 df-inn 8107 df-2 8165 df-3 8166 df-4 8167 df-5 8168 df-6 8169 df-n0 8356 |
This theorem is referenced by: 6p5e11 8630 6p6e12 8631 7p7e14 8636 8p7e15 8642 9p7e16 8649 9p8e17 8650 6t3e18 8662 6t4e24 8663 6t5e30 8664 6t6e36 8665 7t7e49 8671 8t3e24 8673 8t7e56 8677 8t8e64 8678 9t4e36 8681 9t5e45 8682 9t7e63 8684 9t8e72 8685 6lcm4e12 10613 |
Copyright terms: Public domain | W3C validator |