![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6p3e9 | Unicode version |
Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
6p3e9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8236 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq2i 5575 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 6cn 8258 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 2cn 8247 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | ax-1cn 7201 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | addassi 7259 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 6 | eqtr4i 2106 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | df-9 8242 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 6p2e8 8318 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 9 | oveq1i 5574 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | eqtr4i 2106 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 7, 11 | eqtr4i 2106 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-resscn 7200 ax-1cn 7201 ax-1re 7202 ax-addrcl 7205 ax-addass 7210 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-iota 4917 df-fv 4960 df-ov 5567 df-2 8235 df-3 8236 df-4 8237 df-5 8238 df-6 8239 df-7 8240 df-8 8241 df-9 8242 |
This theorem is referenced by: 3t3e9 8326 6p4e10 8699 ex-gcd 10846 |
Copyright terms: Public domain | W3C validator |