ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p5lem Unicode version

Theorem 6p5lem 8627
Description: Lemma for 6p5e11 8630 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
6p5lem.1  |-  A  e. 
NN0
6p5lem.2  |-  D  e. 
NN0
6p5lem.3  |-  E  e. 
NN0
6p5lem.4  |-  B  =  ( D  +  1 )
6p5lem.5  |-  C  =  ( E  +  1 )
6p5lem.6  |-  ( A  +  D )  = ; 1 E
Assertion
Ref Expression
6p5lem  |-  ( A  +  B )  = ; 1 C

Proof of Theorem 6p5lem
StepHypRef Expression
1 6p5lem.4 . . 3  |-  B  =  ( D  +  1 )
21oveq2i 5554 . 2  |-  ( A  +  B )  =  ( A  +  ( D  +  1 ) )
3 6p5lem.1 . . . 4  |-  A  e. 
NN0
43nn0cni 8367 . . 3  |-  A  e.  CC
5 6p5lem.2 . . . 4  |-  D  e. 
NN0
65nn0cni 8367 . . 3  |-  D  e.  CC
7 ax-1cn 7131 . . 3  |-  1  e.  CC
84, 6, 7addassi 7189 . 2  |-  ( ( A  +  D )  +  1 )  =  ( A  +  ( D  +  1 ) )
9 1nn0 8371 . . 3  |-  1  e.  NN0
10 6p5lem.3 . . 3  |-  E  e. 
NN0
11 6p5lem.5 . . . 4  |-  C  =  ( E  +  1 )
1211eqcomi 2086 . . 3  |-  ( E  +  1 )  =  C
13 6p5lem.6 . . 3  |-  ( A  +  D )  = ; 1 E
149, 10, 12, 13decsuc 8588 . 2  |-  ( ( A  +  D )  +  1 )  = ; 1 C
152, 8, 143eqtr2i 2108 1  |-  ( A  +  B )  = ; 1 C
Colors of variables: wff set class
Syntax hints:    = wceq 1285    e. wcel 1434  (class class class)co 5543   1c1 7044    + caddc 7046   NN0cn0 8355  ;cdc 8558
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-sub 7348  df-inn 8107  df-2 8165  df-3 8166  df-4 8167  df-5 8168  df-6 8169  df-7 8170  df-8 8171  df-9 8172  df-n0 8356  df-dec 8559
This theorem is referenced by:  6p5e11  8630  6p6e12  8631  7p4e11  8633  7p5e12  8634  7p6e13  8635  7p7e14  8636  8p3e11  8638  8p4e12  8639  8p5e13  8640  8p6e14  8641  8p7e15  8642  8p8e16  8643  9p2e11  8644  9p3e12  8645  9p4e13  8646  9p5e14  8647  9p6e15  8648  9p7e16  8649  9p8e17  8650  9p9e18  8651
  Copyright terms: Public domain W3C validator