![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 7nn0 | Unicode version |
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
7nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 8265 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 8363 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-cnex 7129 ax-resscn 7130 ax-1re 7132 ax-addrcl 7135 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 df-inn 8107 df-2 8165 df-3 8166 df-4 8167 df-5 8168 df-6 8169 df-7 8170 df-n0 8356 |
This theorem is referenced by: 7p4e11 8633 7p5e12 8634 7p6e13 8635 7p7e14 8636 8p8e16 8643 9p8e17 8650 9p9e18 8651 7t3e21 8667 7t4e28 8668 7t5e35 8669 7t6e42 8670 7t7e49 8671 8t8e64 8678 9t3e27 8680 9t4e36 8681 9t8e72 8685 9t9e81 8686 |
Copyright terms: Public domain | W3C validator |