ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8cn Unicode version

Theorem 8cn 8269
Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
8cn  |-  8  e.  CC

Proof of Theorem 8cn
StepHypRef Expression
1 8re 8268 . 2  |-  8  e.  RR
21recni 7270 1  |-  8  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 1434   CCcc 7118   8c8 8239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-resscn 7207  ax-1re 7209  ax-addrcl 7212
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-in 2989  df-ss 2996  df-2 8242  df-3 8243  df-4 8244  df-5 8245  df-6 8246  df-7 8247  df-8 8248
This theorem is referenced by:  8p2e10  8714  8t2e16  8749  8t5e40  8752
  Copyright terms: Public domain W3C validator