ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8th4div3 Unicode version

Theorem 8th4div3 8317
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.)
Assertion
Ref Expression
8th4div3  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( 1  /  6
)

Proof of Theorem 8th4div3
StepHypRef Expression
1 ax-1cn 7131 . . . 4  |-  1  e.  CC
2 8re 8191 . . . . 5  |-  8  e.  RR
32recni 7193 . . . 4  |-  8  e.  CC
4 4cn 8184 . . . 4  |-  4  e.  CC
5 3cn 8181 . . . 4  |-  3  e.  CC
6 8pos 8209 . . . . 5  |-  0  <  8
72, 6gt0ap0ii 7794 . . . 4  |-  8 #  0
8 3re 8180 . . . . 5  |-  3  e.  RR
9 3pos 8200 . . . . 5  |-  0  <  3
108, 9gt0ap0ii 7794 . . . 4  |-  3 #  0
111, 3, 4, 5, 7, 10divmuldivapi 7927 . . 3  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( ( 1  x.  4 )  /  (
8  x.  3 ) )
121, 4mulcomi 7187 . . . 4  |-  ( 1  x.  4 )  =  ( 4  x.  1 )
13 2cn 8177 . . . . . . . 8  |-  2  e.  CC
144, 13, 5mul32i 7322 . . . . . . 7  |-  ( ( 4  x.  2 )  x.  3 )  =  ( ( 4  x.  3 )  x.  2 )
15 4t2e8 8257 . . . . . . . 8  |-  ( 4  x.  2 )  =  8
1615oveq1i 5553 . . . . . . 7  |-  ( ( 4  x.  2 )  x.  3 )  =  ( 8  x.  3 )
1714, 16eqtr3i 2104 . . . . . 6  |-  ( ( 4  x.  3 )  x.  2 )  =  ( 8  x.  3 )
184, 5, 13mulassi 7190 . . . . . 6  |-  ( ( 4  x.  3 )  x.  2 )  =  ( 4  x.  (
3  x.  2 ) )
1917, 18eqtr3i 2104 . . . . 5  |-  ( 8  x.  3 )  =  ( 4  x.  (
3  x.  2 ) )
20 3t2e6 8255 . . . . . 6  |-  ( 3  x.  2 )  =  6
2120oveq2i 5554 . . . . 5  |-  ( 4  x.  ( 3  x.  2 ) )  =  ( 4  x.  6 )
2219, 21eqtri 2102 . . . 4  |-  ( 8  x.  3 )  =  ( 4  x.  6 )
2312, 22oveq12i 5555 . . 3  |-  ( ( 1  x.  4 )  /  ( 8  x.  3 ) )  =  ( ( 4  x.  1 )  /  (
4  x.  6 ) )
2411, 23eqtri 2102 . 2  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( ( 4  x.  1 )  /  (
4  x.  6 ) )
25 6re 8187 . . . 4  |-  6  e.  RR
2625recni 7193 . . 3  |-  6  e.  CC
27 6pos 8207 . . . 4  |-  0  <  6
2825, 27gt0ap0ii 7794 . . 3  |-  6 #  0
29 4re 8183 . . . 4  |-  4  e.  RR
30 4pos 8203 . . . 4  |-  0  <  4
3129, 30gt0ap0ii 7794 . . 3  |-  4 #  0
32 divcanap5 7869 . . . 4  |-  ( ( 1  e.  CC  /\  ( 6  e.  CC  /\  6 #  0 )  /\  ( 4  e.  CC  /\  4 #  0 ) )  ->  ( ( 4  x.  1 )  / 
( 4  x.  6 ) )  =  ( 1  /  6 ) )
331, 32mp3an1 1256 . . 3  |-  ( ( ( 6  e.  CC  /\  6 #  0 )  /\  ( 4  e.  CC  /\  4 #  0 ) )  ->  ( ( 4  x.  1 )  / 
( 4  x.  6 ) )  =  ( 1  /  6 ) )
3426, 28, 4, 31, 33mp4an 418 . 2  |-  ( ( 4  x.  1 )  /  ( 4  x.  6 ) )  =  ( 1  /  6
)
3524, 34eqtri 2102 1  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( 1  /  6
)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285    e. wcel 1434   class class class wbr 3793  (class class class)co 5543   CCcc 7041   0cc0 7043   1c1 7044    x. cmul 7048   # cap 7748    / cdiv 7827   2c2 8156   3c3 8157   4c4 8158   6c6 8160   8c8 8162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-2 8165  df-3 8166  df-4 8167  df-5 8168  df-6 8169  df-7 8170  df-8 8171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator