![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9t5e45 | Unicode version |
Description: 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9t5e45 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 8415 |
. 2
![]() ![]() ![]() ![]() | |
2 | 4nn0 8410 |
. 2
![]() ![]() ![]() ![]() | |
3 | df-5 8204 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 9t4e36 8717 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3nn0 8409 |
. . 3
![]() ![]() ![]() ![]() | |
6 | 6nn0 8412 |
. . 3
![]() ![]() ![]() ![]() | |
7 | eqid 2083 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 3p1e4 8270 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 5nn0 8411 |
. . 3
![]() ![]() ![]() ![]() | |
10 | 1 | nn0cni 8403 |
. . . 4
![]() ![]() ![]() ![]() |
11 | 6 | nn0cni 8403 |
. . . 4
![]() ![]() ![]() ![]() |
12 | 9p6e15 8684 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 10, 11, 12 | addcomli 7356 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 8654 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 2, 3, 4, 14 | 4t3lem 8690 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 ax-setind 4309 ax-cnex 7165 ax-resscn 7166 ax-1cn 7167 ax-1re 7168 ax-icn 7169 ax-addcl 7170 ax-addrcl 7171 ax-mulcl 7172 ax-addcom 7174 ax-mulcom 7175 ax-addass 7176 ax-mulass 7177 ax-distr 7178 ax-i2m1 7179 ax-1rid 7181 ax-0id 7182 ax-rnegex 7183 ax-cnre 7185 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2826 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-br 3807 df-opab 3861 df-id 4077 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-iota 4918 df-fun 4955 df-fv 4961 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-sub 7384 df-inn 8143 df-2 8201 df-3 8202 df-4 8203 df-5 8204 df-6 8205 df-7 8206 df-8 8207 df-9 8208 df-n0 8392 df-dec 8595 |
This theorem is referenced by: 9t6e54 8719 |
Copyright terms: Public domain | W3C validator |