![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abbi2i | Unicode version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbiri.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
abbi2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2188 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | abbiri.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbir 1383 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 |
This theorem is referenced by: abid2 2200 cbvralcsf 2965 cbvrexcsf 2966 cbvreucsf 2967 cbvrabcsf 2968 symdifxor 3231 dfnul2 3254 dfpr2 3419 dftp2 3443 0iin 3738 epse 4099 fv3 5223 fo1st 5809 fo2nd 5810 xp2 5824 tfrlem3 5954 tfr1onlem3 5981 nnzrab 8445 nn0zrab 8446 |
Copyright terms: Public domain | W3C validator |